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Abstract—Accurate spike sorting is an important issue for
neuroscientific and neuroprosthetic applications. The sorting
of spikes depends on the features extracted from the neural
waveforms, and a better sorting performance usually comes
with a higher sampling rate (SR). However the long duration
experiment on free-moving subjects is the current trend. For
low power considerations, the compromise on sorting accuracy
is made for the miniaturized and wireless neural recording ICs
with a lower SR. In this paper, we introduce the cubic spline
interpolation to strike the power and accuracy tradeoff on the
recording microsystems for the off-site and on-chip spike sorter.
According to the simulation results, the recorder operated with
the SR of 12.5k sample per second (sps) outperforms the system
with 25ksps SR on both accuracy and power if the interpolation
is appropriately performed before the spike sorting.

I. INTRODUCTION

Spike sorting is an important tool to study neural activities
and brain functions in neuroscience research. It is also a key
component in cortically-controlled neuroprosthetics for spinal
cord injured patients. Robust sorting performance is a critical
issue for these applications [1]. The results of the neural
decoding is less significant without an accurate spike sorting.
However making miniaturized and wireless microsystems for
the experiments on free-moving subjects is the current design
trend. On these resource-constrained systems, the design issues
for low power consumption is usually considered and may
result in the compromise on sorting performance.

One of the design issues for the power and accuracy tradeoff
is the sampling rate in the neural recorder. Since the classifica-
tion of spikes depends on the features extracted from the spike
waveforms, a better sorting performance usually comes with a
higher sampling rate. However the high sampling rate leads to
a larger power consumption for the neural recording circuitry,
which may not be feasible for the applications. A sampling
rate of 100k sample per second (sps) is suggested in [2] for
an excellent performance. However the current microsystems
are usually designed with 25–40ksps sampling rates [3].

In this paper, we introduce the cubic spline interpolation
in order to strike this tradeoff between power and accuracy.
Since most spike energy is under 6.25kHz [2], the sorting
performance with 100ksps signal resolution could be achieved
even with a low sampling rate and low power consumption
for the neural recorder after the waveform reconstruction
through the interpolation. The remainder of this paper is
organized as follows. The preliminary information is described
in Section II. In Section III, the interpolation is applied to
the neural recording systems with off-site and on-line spike
sorter. Section IV demonstrates the improvement on power and
accuracy, and Section V describes the conclusion and future

Low-noise Amplifier ADC

Sorting
Results

Analog Frontend Neural Recording Circuitry (AFNRC)

Digital Spike Sorting Processor (DSSP)

Neural
Signals

Spike
Deteciton

Alignment Feature
Extraction

Classification

Fig. 1. The hardware operation of the neural recording and spike sorting.

works.

II. PRELIMINARY

A. Spike Sorting

Most neurons in the brain communicate by firing action
potentials, or spikes. These electrical voltage signals can be
recorded extracellularly with very thin electrodes implanted
into brains. Very often an implanted electrode records the
signals from multiple surrounded neurons, and the recorded
waveform is the superimposed potentials fired from these neu-
rons. Spike sorting is a kind of reverse process to differentiate
which spike corresponds to which of these close-by neurons
from the superimposed waveform.

Figure 1 shows the hardware operations of the neural
recording and the spike sorting. The analog frontend neural
recording circuitry (AFNRC) digitizes the signals after the
amplification and filtering of the microvolt neural potentials.
Afterwards, the neural samples are input to the digital proces-
sor for the spike sorting. The spikes are detected according
to their localized instantaneous energy. Then the waveform
characteristics, or the features, of the spikes are extracted after
the waveform alignment. Spikes with similar features should
be corresponding to a specific neuron. Therefore, the spikes
are classified according to the assembled clusters on the finite-
dimension feature space.

B. Sampling Skew and Waveform Distortion

During the spike sorting, the extracted features of spikes
are correlated to the shapes of the spike waveforms. As a
result any waveform distortion may have great influence on
the performance of spike sorting. Sampling skew is one of
the main issues resulting the waveform distortion. During
the neural recording, the firing of the action potentials can
hardly be synchronized with the sampling of the neural signals.
Different time skews corresponding to the neural firing time
are sampled for different spikes. Therefore, the variation of
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Fig. 2. The waveform distortion caused by the sampling skew.
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Fig. 3. The improvement of neuron cluster separation after the interpolation.
The original neural signals are sampled at 12.5ksps as shown in (a). For (b)
and (c), the spike waveforms are re-aligned after the up-sampling to 25ksps
and 100ksps with cubic spline interpolation. The principal component analysis
are performed after the wavelet transformation for the feature extraction. Since
the synthesized neural data from [4] are used, different colors corresponding
to different neurons are drawn according to the golden standards (not the
classification results).

the spike waveforms are created and results in the degradation
of the sorting performance.

Figure 2 demonstrates the waveform distortion caused by
the sampling skew. Three spikes generated by the same neuron
are shown in Fig. 2 (a). The background waveforms are
sampled at the rate of 100k sample per second (sps), while
the foregrounds are sampled at 12.5ksps. Since most of the
spike energy (ex. 92.5% [2]) has frequency response under
6.25kHz, the sampling frequency of 12.5ksps should be feasi-
ble to preserve most spike information for sorting. However,
because of the sampling skew, significant differences between
three spikes at 12.5ksps are displayed in Fig. 2 (b) after the
waveform alignment along the amplitude peaks. The most
obvious distortions were happened in the neural polarization
and depolarization regions (i.e. peak and valley) which are
the most significant waveform characteristics used for spike
sorting.

C. Power and Accuracy Tradeoff

A common solution for the sampling skew is to increase the
sampling frequency. The sample rate of 100ksps is suggested
in the system requiring high-end sorting performance [2].
However, portable or implantable neural recorders supporting
a large channel number and wireless functionality [3] are the
current trend for the experiments on freely moving subjects.
Low power consumption is essential for the implantable de-
vices. Low data rate may also be required for the wireless
telemetry under limited hardware resources. The systems
with high sampling rates usually result in a large power
consumption and high data rate, and is not feasible for the
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Fig. 4. The proposed off-site spike sorting system with interpolation.
SRAFNRC and SRDSSP indicate the sampling rates of the processed data in
AFNRC and DSSP respectively.

applications. Therefore, the sampling rates of 25–40ksps are
generally adopted in the current hardware prototypes with the
compromise on the accuracy of spike sorting [3].

D. Interpolation

The spikes have the most energy under 6.25kHz. According
to the Nyquist-Shannon sampling theory, it should be feasible
to reconstruct the 100ksps spike waveforms through the in-
terpolation if the sampling rate in the AFNRC is higher than
12.5ksps. An uncompromised spike sorting performance may
thus be achieved even with a sampling rate as low as 12.5ksps.
Figure 3 shows the improvement of the neuron separation by
means of the interpolation. The neural signals are originally
sampled at 12.5ksps. Then the spike waveforms are interpo-
lated to 25ksps and 100ksps in Fig 3 (b) and (c) respectively.
After the interpolation, the spike peaks are reconstructed, and
the waveform can be re-aligned with less error caused by the
sampling skew. This improves the separation of neuron clusters
on the feature space and leads to a better sorting performance.

III. SPIKE SORTING SYSTEMS WITH INTERPOLATION

The spike sorting systems can be divided into two
categories—the off-site spike sorter and on-chip spike sorter.
In this chapter, we will describe how to improve the power
and accuracy tradeoff through the interpolation in these two
systems.

A. Proposed Off-site Spike Sorter with Interpolation

Figure 4 shows the wireless neural recorder along with
the off-site spike sorter. After the wireless transmission, the
spike sorting is operated on the external devices where the
hardware resources may somehow be considered unlimited.
The limited power is consumed by the AFNRC and wireless
transmitter. According to the previous discussion, there is a
tradeoff between the accuracy and power in this framework.
If the whole system is operated at 100ksps signal resolution
(i.e. SRADNRC = SRDSSP = 100ksps), the implanted side will
consume significant power because of a large data rate. The
power can be saved with the compromise on the sorting
accuracy if a lower signal resolution is adopted.

The interpolation can be utilized to improve the power-
accuracy tradeoff. In the proposed system, the spike sorting
is performed after the reconstruction of the high-resolution
neural signals in the external side. Two kinds of improvement
can be expected along the power and accuracy axis. With a
fixed sampling rate and power consumption in the implanted
side, our system achieves a higher sorting accuracy after the
interpolation. With an expected sorting accuracy, the implanted
side may consume lower power consumption with a lower
sampling rate because the compensation can be made by the
interpolation in the external side .
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Fig. 5. The proposed on-chip spike sorting system with interpolation. The SRDSSP here can be further divided into SRDET , SRALIGN , and SRFE&CLA representing
the data sampling rates of spike detection, alignment, and feature extraction along with classification stages.

B. Proposed On-chip Spike Sorter with Interpolation

The wireless neural recorder with on-chip spike sorter
transmits only sorting results which have significantly reduced
data rate compared to the raw data [1]. Therefore more channel
number can be supported or a lower-end wireless transmitter
with smaller power can be utilized. The on-chip spike sorter
will also be a critical component in the implantable realtime
cortically controlled neuroprosthetics [1]. Since only the sort-
ing results are transmitted and there is no room to manipulate
the waveform for accuracy improvement in the external side,
the interpolation process is introduced on chip. The power
consumption is still an important issue here. Although the
usage of the interpolation increases the power of DSSP, it
would release the requirement of the high sampling rate of
AFNRC in some respects. Since the power consumed by the
AFNRC chips [3] is about an order larger than the state-of-the-
art DSSP designs [5], this power tradeoff between the AFNRC
and DSSP would finally result in a smaller total power.

The DSSP consumes larger power after the interpolation.
This penalty can be minimized if the high signal resolution
is only utilized at the critical step of the spike sorting.
Figure 5 shows the system with the proposed on-chip spike
sorter. The DSSP part is divided into three sections with
the specific purposes. First the spike detection usually uses
the energy detector and does not need detailed waveform
information. Therefore the SRDET along with the SRAFNRC

should be set as low as possible in order to save power.
Afterwards, the interpolation is performed and the detected
spikes are aligned with a higher SRALIGN in order to reduce the
sampling skew and improve the ability of neuron separation.
After the alignment, the feature extraction and classification,
the most computationally intensive parts of spike sorting, are
operated after the down-sampling. Since the sampling skew is
minimized during the high-resolution alignment, there should
be limited waveform distortion after the down-sampling and
the sorting performance is kept with lower power consumption.

IV. SIMULATION RESULTS AND DISCUSSION

A. Simulation Environment

1) Neural Data and the Algorithms: The neural signals
from [4] are the 25ksps spikes recorded from the neocortex and
basal ganglia along with the superimposed background noise.
For the spike sorting algorithm, the nonlinear energy operator
(NEO) [6] is adopted in the spike detection. Afterwards the
spike windows are aligned vertically (along amplitude axis)
and horizontally (along time axis) according to the first wave-
form peak. During the feature extraction, principal component
analysis (PCA) are performed after the discrete Haar wavelet

TABLE I
COMPARISON BETWEEN DIFFERENT INTERPOLATION FILTERS

Unit Neural Data #a (nd.a) Neural Data #b (nd.b)
SRAFNRC ksps 12.5 12.5 12.5 12.5 12.5 12.5
SRDSSP ksps 25 50 100 25 50 100
Bilinear CSP 0.61 0.76 0.99 1.37 1.41 1.43

Cubic Spline CSP 1.69 1.91 1.99 1.63 1.95 2.06

transformation for the aligned spikes. Finally, the classification
based on the Watersheds segmentation algorithm [7] is used
to sort the spikes on the feature space.

As for the interpolation, the cubic spline algorithm is mainly
used to test our system while the bilinear filter is also simulated
as a reference. The cubic spline algorithm is based upon
solving the piecewise polynomials for the continuous first and
second derivatives, and is able to reconstruct the waveform
peak and valley with smaller error compared to the bilinear
interpolation.

2) Objective comparison schemes: Although the improve-
ment of the neuron separation can be visually recognized as
shown in Fig. 3, two kinds of objective scores are adopted for
the comparison and analysis. The first method is to quantify
the separation of the neuron clusters on the feature space. In
this case the golden standards are directly used as the sorting
results. The cluster separation parameter (CSP) as the criterion
is defined as follows:

CSP =
Σ(Mahalanobis distances between a pair o f clusters)

Σ(Mahalanobis distances within one cluster)

The system with a larger CSP value indicates a better
capability for neuron separation. The second method is to run
the complete spike sorting algorithm and then compare the
results with the golden standards. The matching scores (MS)
for spike detection (SD) and spike sorting (SS) are defined as
follows:

MSSD =
Correctly Detected Spikes

Total Detected Spike
MSSS =

Correctly Sorted Spikes
Total Detected Spike

B. Simulation Results

1) Interpolation Filter: Table I shows the CSP comparison
between cubic spline and bilinear interpolations. We use the
off-site spike sorter as the simulation platform. The cubic
spline filter can reconstruct the peak and valley of spike
waveforms, which is important in waveform alignment to
reduce the sampling skew error. Therefore the cubic spline
interpolation significantly outperforms the bilinear one.

2) Off-site Spike Sorter with Interpolation: Figure 6 (a)
shows the CSP comparison between different off-site spike
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Fig. 6. CSP and MS comparisons of (a,d) off-site spike sorting systems with a fixed SRDSSP; (b,e) on-chip spike sorting systems with a fixed SRDET ; (b,f)
on-chip spike sorting systems with a fixed SRDET and SRALIGN .

sorters. Because the external side is supposed to have unlim-
ited power, we fix the SRDSSP at 100ksps. The implant side
consumes lower power with a lower SRAFNRC . The results
show that the performance rapidly degrades if the sampling
rate in AFNRC is less than 12.5ksps. In addition, the system
with 25ksps SRAFNRC slightly outperforms that with 12.5ksps.
That is because 92.5% spike energy is under 6.25kHz while
still 6.6% is between 6.25 and 12.5kHz [2]. The red dotted
line in the figure indicates the CSP value of the benchmark
system. This benchmark is simulated with 25ksps for both
SRAFNRC and SRDSSP. Compared with the benchmark, the
system operated at 12.5ksps and 100ksps for SRAFNRC and
SRDSSP has a better sorting accuracy and consumes less power
in the implant side.

Figure 6 (d) shows the same comparison with MS values.
The results demonstrate the same trend as those in the CSP
comparison. Note that as SRAFNRC decreases, the rapid falling
of MSSS appears faster than that of MSSD. This is because the
spike sorting requires the subtle waveform information while
the spike detection checks only the energy variation.

3) On-line Spike Sorter with Interpolation: Figure 6 (b) and
(c) show the CSP comparisons between different on-line spike
sorting systems. According to the analysis in Section IV-B2,
the spike detection is less sensitive to the signal resolution.
Therefore, we first fix the SRDET to either 12.5ksps or 25ksps.
In Fig. 6 (b), we increase the signal resolution before the align-
ment in order to reduce the sampling skew. The CSP curve
begins saturating around 50ksps and slightly increases before
100ksps. In Fig. 6 (c), since spikes are aligned at 100ksps and
the sampling skew error is minimized, we can perform the
feature extraction and classification in a lower resolution in
order to save the power. A flat region is observed when the
down-sampling starts. The CSP value rapidly decreases after
25ksps. Compared to the benchmark system, 25ksps, 100ksps,

and 50ksps are suggested for SRDET , SRALIGN , and SRFE&CLA

for an extremely better sorting performance with additional
power in DSSP. The system with 12.5ksps, 50ksps, and 25ksps
should have less power consumption and still outperform the
benchmark. The same comparisons done with MS values are
shown in Fig. 6 (e) and (f), and have similar results.

V. CONCLUSION AND FUTURE WORKS

In this paper, the off-site and on-chip spike sorting systems
with cubic spline interpolation is proposed to strike the tradeoff
between the sorting accuracy and power consumption. The
simulation results show that the 12.5ksps recorder could
outperform the 25ksps one on both accuracy and power if
the interpolation is appropriately performed before the spike
sorting. In the future, the hardware implementation of the
cubic spline interpolation is required to complete the proposed
system with the on-chip spike sorter.
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